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Optimum Mesh Grading for
Finite-Difference Method

Wolfgang Heinrich, Klaus Beilenhoff, Paolo Mezzanotte, and Luca Roselli, Member, IEEE

Abstract— The coarseness error of the finite-difference (FD)
method is studied analyzing a typical planar waveguide and a
rectangular coaxial geometry. Results for equidistant and graded
mesh are compared in terms of accuracy and numerical efforts.
Because of the field singularities involved a graded mesh proves to
be superior compared to the equidistant case. A grading strategy
with optimum efficiency is presented. Furthermore, the results
show that the most significant improvement in accuracy can be
obtained by incorporating the edge behavior into the FD scheme.

1. MOTIVATION

OWADAYS numerical methods for electromagnetic

simulation constitute an indispensable tool for solving
microwave engineering problems. Among the different
approaches, the finite-difference (FD) method in time domain
(FDTD) has received great attention due to its flexibility and
its direct relationship with Maxwell’s equations. Commonly,
discretization follows the central difference scheme according
to Yee [1]. As well known, this scheme exhibits second-order
accuracy as long as an equidistant mesh is used. In the case of
mesh grading, this characteristic deteriorates to the first order.
In the past, several approaches were proposed to overcome this
limitation (e.g., [2]). But this is accomplished at the expense
of other properties such as flexibility.

In the discussions on this topic, however, one fact needs
to be emphasized that appears to be not as generally known
as the above-mentioned ones: In the derivation of the second-
order accuracy behavior, one assumes regular, i.e. bounded,
fields. If the discretized domain contains field singularities,
the order of accuracy is determined by the singularity rather
than by the inherent order of accuracy (see, e.g., finite-clement
(FE) method [3]). Such singularities occur at each metallic
corner. In the case of planar microwave circuits, for instance,
the field behavior near the corners or edges dominates the
overall behavior. Hence, it becomes questionable whether the
second-order rule provides a good estimation for practical
applications.

In this context, the paper contributes results on three aspects:

1) The accuracy of the FD method in the presence of field
singularities is studied in detail.

2) Information is provided how to choose discretization in
order to optimize the tradeoff between accuracy and
numerical efforts.
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Fig. 1. The waveguide cross sections under consideration. (a) Slot-line type
of structure with infinitely thin center conductor (b) Square coaxial geometry
(center conductor and enclosure are ideally conducting).

3) The improvement when including the edge behavior into
the FD scheme is shown.
One should note that our considerations focus on the so-called
coarseness error, i.e., the error caused by the limited spatial
resolution. There are, of course, other sources of error, e.g., the
dispersion due to discretization, which, however, are beyond
the scope of this paper.

II. METHOD OF ANALYSIS AND MESHING

In order to determine accuracy one needs to treat a structure
for which the results are analytically known or can be derived
by other highly accurate methods. On this reason, we choose
the waveguide problems depicted in Fig. 1.
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Fig. 2. Example for discretization by a graded mesh (cross section of structure in Fig. 1(a) with smallest cell size Asy,,, = 0.5um, grading according

to a geometric series with factor ¢ =%/2, all dimensions in meter).

With respect to the intended investigations, the structures

offer the following desirable properties:

1) In Fig. 1(a), the fields concentrate in the slots. Thus, it
represents a good example for the sitnation in planar
circuits where the field behavior in a slot region deter-
mines the characteristics (e.g., CPW, slot-line, coupled
microstrip). Fig. 1(b) shows a similar geometry, but with
a thick center conductor and thus a different order of
edge singularity (square coaxial cable).

2) The geometry of both structures is symmetrical and
relatively simple. Therefore, the influence of the field
singularity can be separated and it is not clouded by
other effects.

3) The waveguides support a pure TEM fundamental wave.
Thus, the characteristic impedance Z is well defined
and may be used as an indicator for overall accuracy.
On the other hand, the outer boundaries form a rect-
angular waveguide. Hence higher-order modes can be
investigated at the same time.

4) Assuming the lateral walls of structure (a) to be removed
the characteristic impedance of the TEM mode can be
derived analytically by conformal mapping. For type (b)
and the higher-order mode of type (a), a mode-matching
approach [8] is used as a reference.

The dimensions are chosen so that the slot geometry corre-
sponds to the situation typical for MMIC’s and that the cut-off
frequencies for the higher-order modes are sufficiently high.

For analysis, we employ FD methods both in time (FDTD

[4]) and frequency domain (FDFD [5]). In the FDTD case,
a three-dimensional (3-D) treatment is applied exciting the
structure with a Gaussian pulse, whereas in the FDFD case a
two-dimensional (2-D) eigenvalue problem is solved. The time
step At in the FDTD analysis is chosen to be 0.9 the value at
the stability limit. Comparing the results of both methods we
found that the deviations are of minor importance and do not
affect the following investigations.

In order to separate the influence of the different mesh

parameters we proceed as follows:

1) An equidistant mesh is used starting with a cell size of
As = Az = Ay = 8um. Subsequently, its value is
reduced to 4um, 2um, etc.

2) A graded mesh is applied with the smallest cell size
ASmin located at the corners of the inner conductor.
Starting from these points, the cell size is increased

20?
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Fig. 3. Percentage error in characteristic impedance Z of the waveguide
according to Fig. 1(a) versus cell size for an equidistant mesh (the relative
error refers to the analytical value Z = 94.2Q0 obtained by conformal
mapping).

successively by a constant factor g. Hence, the cell sizes
follow a geometric series. Fig. 2 illustrates this strategy
for the case of Fig. 1(a).

III. RESULTS

A. Infinitely Thin Center Conductor (TEM mode)

First, the equidistant case with infinitely thin center conduc-
tor, Fig. 1(a), under TEM-mode excitation will be considered.
In Fig. 3, the error is plotted as a function of the cell size.

Clearly, one observes a first-order behavior (the same find-
ing applies to the phase constant § of the higher-order mode —
see Section III-D). At the first glance, this may be surprising
since one expects a second-order characteristic.

The discrepancy is caused by the field singularity. The
investigated structure with an infinitely thin strip exhibits an
edge singularity of the order 0.5 (i.e., £ ~ 1/4/7 with E
denoting the normal electric field and r the distance from
the edge). Incorporating this behavior into the FD equations,
the resulting field approximation may be checked by a simple
treatment. One finds a rule AE ~ As®® that is worse than
AZ ~ As' as observed in Fig. 3. Presumably, certain errors
cancel out when calculating the impedance Z from the fields.

Second, a graded mesh is applied (see Fig.2) and the
influence of both the smallest cell size As,,;, and the grading
factor ¢ is studied.

Fig. 4 illustrates the results. It presents curves varying ¢
with Asm,, kept constant. The error AZ in characteristic
impedance Z is plotted against the number n of cells in
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Fig. 4. Error of characteristic impedance Z against number of cells n required: comparison between equidistant and graded mesh with As,y = 0.5um,
0.25pum, and 0.125pm and the grading factor ¢ varied as given in the inset (for other data see Fig. 3).

the cross-section, which corresponds to the computer efforts
involved (note that n scales with (As)™?, ie., a first-order
characteristic with error AZ ~ As is equivalent to AZ ~
n~0%). The aim of the diagram in Fig. 4 is to provide
information on an application-oriented figure of merit, that is
which accuracy can be achieved for a given number of cells,
or, vice versa, which is the numerical expense for a given
accuracy. In other words, the nearer a curve to the origin of
the diagram the more effective the discretization.

The results demonstrate clearly that mesh grading leads
to considerable improvement in efficiency. For the structure
considered, the graded mesh outperforms the equidistant case
even for g values as large as 4. Regarding the order of
accuracy, a value of about 1.5 is achieved compared to 1 for
the equidistant mesh. Hence, due to the singularity effect, the
grading yields a better order of accuracy than possible by an
equidistant mesh. Furthermore, the curves in Fig. 4 indicate
that there is an optimum choice for the grading factor q.
Independent of the smallest cell size, a value ¢ in the range
1.2...2 yields the best results in terms of efficiency. For larger
values of g, accuracy degrades due to poor resolution. For
g — 1, on the other hand, the increase in mesh size does
not lead to an equivalent improvement in accuracy because
the uniform mesh behavior is recovered. This characteristic is
illustrated by Fig. 5 where the mesh size n as well as the error
are plotted against the grading factor q.

B. Thick Center Conductor

Fig. 6 provides information on the error characteristics for
the structure of Fig. 1(b). This different type of waveguide
is treated in order to generalize the results of the previous
section, i.e., to check whether the findings for the structure
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Fig. 5. Mesh size n and error in Z against grading factor ¢ for
A = 0.125pm (other data identical to Fig. 3).

in Fig. 1(a) remain valid for type (b) as well. Because of the
square cross-section of the center conductor only 90° edges
are involved. Hence, the order of singularity is weaker than
for version (a) (E ~ r~1/3),
Comparing the results with those for the infinitely thin strip
(Fig. 4) two important features can be observed:
1) The slope of the curve for the equidistant mesh is
different. The behavior follows a n~2/3 rule, which
corresponds to an error order AZ ~ (As)4/ % compared
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Fig. 6. Data of Fig. 4 for the square coaxial geometry of Fig. 1(b): Error of characteristic impedance Z against number of cells n (equidistant discretization
and graded mesh with As,,,, = 0.5pm, 0.25um, 0.125um, and the grading factor g varied as given 1n the inset; the relative error refers to the value

z

36 82€2 obtained by mode-matching method [8]).

with AZ ~ As for the infinitely thin strip in Fig. 4. This
finding supports the afore-mentioned statement that the
order of accuracy is determined by the field singularities
rather than by the common second-order characteristic
of the central-difference scheme.

The improvement that can be achieved by mesh grading
is less pronounced than in Fig. 4. For ¢ > 2, the
equidistant mesh even turns out to be more efficient
than the graded one. These differences probably can be
attributed to the fact that in the case of the square coaxial
geometry the influence of the edge singularities on the
overall waveguide properties is not as significant as in
the case of Fig. 1(a).

The important point, however, is not that the influence of the
singularity is weaker than for Fig. 1(a) but that the general
dependence on grading factor ¢ closely resembles the case
treated before: ¢ values in the range 1.2. .. 1.4 lead to optimum
numerical efficiency. Also, as in Fig. 4, the order of accuracy
that can be achievd by mesh grading approaches the value 1.5.
This means: The optimum choice of the meshing parameters
does not critically depend on the type of singularity or on the
individual structure. As a consequence, guide lines may be
derived that apply to a very general class of structures. This,
of course, is very important for practical application.

2)

C. Improved FD Treatiment of Edge Singularities

The tesults shown before, particularly those for the thin
strip of Fig. 1(a), point out the significance of the field
description at the metallic edges. Therefore, when seeking a
formulation with improved accuracy one has to concentrate
on the singularity rather than on the regular domains. As

was shown in [6], the singular behavior can be explicitly
incorporated into the FD equations. The treatment is based on
the integral form of Maxwell’s equations over the elementary
cells (i.e., a finite-integration scheme, which, however, in most
cases yields equations identical to common FD theory). Due
to the integral formulation it is possible to take into account a
field singularity of known order explicitly in the FD equations
for the elementary cells adjacent to the edge. The modifications
can be implemented easily into the FD code and do not
increase the numerical expense (see also [7]). This approach
was applied to the structure of Fig. 1(a) in order to assess the
improvement in accuracy.

In Fig. 7 the results are compared to the conventional FD
formulation. First, it has to be stated that the modified version
yields better accuracy for all data calculated. In the case of an
equidistant mesh, the error is reduced dramatically by a factor
of about 5. For the graded mesh, the improvement depends on
the factor ¢g. Again, ¢ = 1.2...1.4 leads to best efficiency. As
can be expected, the error reduction that can be achieved by
mesh grading is less than for the conventional FD formulation
since the singularity effects are accounted for a priori.

D. Higher-Order Mode

So far, the investigations are confined to the TEM mode.
Hence, the question arises whether the findings apply to
other modes as well. For this reason, we consider the first
higher-order mode of the structure of Fig. 1(a). Instead of the
characteristic impedance, the propagation constant (3 is studied
at a sufficiently high frequency (f = 1.5 THz, this value might
appear to be unrealistically high but it can easily be reduced
by scaling up the waveguide dimensions). A high-accuracy
mode-matching analysis serves as a reference (3 = 21 153.0).
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Fig. 7. Data of Fig. 4 when using modified FD equations accounting for the edge singularity [6]: Error of characteristic impedance Z against number of
cells » for both equidistant and graded mesh (with As,,,, = 0.5pm, 0.25um, and the grading factor ¢ varied as given in the inset); other data as in Fig. 3.
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Fig. 8. Data of Fig. 7 for the first higher-order mode of the structure in Fig. 1(a): Error of propagation constant 3 against number of cells n for conventional
FD approach with both equidistant and graded mesh and for the modified version including the edge singularity (equidistant case); NSy, = 0.25pm, grading
factor gvaried as given in the inset; reference value 8 = 21153.0 at f = 1.5THz calculated by mode-matching technique [8]; other data as in Fig. 7.

Fig. 8 presents the results. This figure clearly demonstrates
that:

2) as in the preceding sections, the graded mesh proves to
be superior to the equidistant gridding. Again, a grading

1) The propagation constant § behaves as the character-
istic impedance in the TEM situation, i.e., its second
order accuracy deteriorates to a first -order characteristic
due to the singularity (for the unperturbed rectangular
waveguide it is of second order);

factor ¢ of about 1.2 leads to best performance;
3) including the edge condition according to Section III-C
greatly improves accuracy.

This makes clear that the results of the TEM case hold for
higher-order modes as well.
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IV. CONCLUSION

regard to the FD analysis of planar circuits and fin-line
structures can be drawn.

1y

2

3)

4)

The well-known second-order error behavior of the
FD method refers only to regular fields and does not
hold at field singularities. For the infinitely thin strip,
we find only a first-order behavior in characteristic
impedance and propagation constant. This means that the
overall accuracy is determined primarily by the spatial
resolution at the metallic edges and corners.

Although the introduction of mesh grading increases the
principal FD error from second to first order, it yields a
much better overall accuracy than the equidistant version
for a given mesh size. This is due to the improved field
resolution near the singularities.

If one uses a graded mesh with a constant ratio g relating
the neighboring discretization steps, one has two degrees
of freedom: the smallest cell size As,.;n, and the grading
factor ¢. Our investigations indicate that choosing ¢ in
the range 1.2...1.4 yields optimum efficiency indepen-
dent of the minimum cell size. This finding applies for
higher-order waveguide modes equally.

For structures with strong singularities (e.g., of the CPW
and slot-line type) a significant improvement in accuracy
can be achieved by incorporating the edge singularity
into the FD equations -[6]. Error reductions up to a
factor of more than 5 are found. Such an approach
can be easily implemented if the order of singularity is
known. This is the case for the common 2-D waveguide
problems (see, e.g., [9]). One should mention, however,
that problems are encountered when dealing with 3-
D geometries, because there is no a-priori-knowledge
available concerning the order of singularity at metallic
corners. This has to be investigated further.
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